IAFPA 2022

The impact of reflection and retention intervals on earwitness accuracy: two experiments

Francis Nolan, Nikolas Pautz, Kirsty McDougall, Katrin Müller-Johnson, Harriet M.J. Smith and Alice Paver

Economic and Social Research Council

NOTTINGHAM

IVIP: Improving Voice Identification Procedures

Project Team

University of Cambridge:

Nottingham Trent University:

De Montfort University: University of Oxford:

PI: Kirsty McDougall (phonetics)
Francis Nolan (phonetics)
Alice Paver (phonetics)
Nikolas Pautz (psychology)
Natalie Braber (sociolinguistics)
David Wright (sociolinguistics)
Harriet Smith (psychology)
Jeremy Robson (law)
Katrin Müller-Johnson
(criminology, psychology)

UK ESRC Grant Ref: ES/S015965/1

Economic and Social Research Council

Simulating an earwitness situation

- Yet, in crime situations, if a witness realises they have heard a perpetrator, they're likely to think back over the event
- RQ: Does explicit post-encoding (post target-exposure) reflection improve voice recognition accuracy?

Experiment 1: distractor task, no delay

	target present	target absent
with reflection	\checkmark	\checkmark
no reflection	\checkmark	\checkmark

3 separate parades, each with its own target (if present), and 3 separate sets of foils, were used; but results will be combined here

Word-spotting distractor task

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	
1	M	A	N	G	0	М	Е	R	С	U	R	R	Α	Ν	т	Y	U	٧	т	Y	R	U	1
2	D	Ρ	G	М	۷	т	н	Е	G	С	U	Μ	Q	U	A	т	z	х	z	U	М	U	2
3	A	L	т	0	Α	х	С	Y	0	z	Е	G	Ν	н	т	к	D	т	к	υ	Α	s	3
4	M	Е	Е	D	0	Ν	Е	L	к	в	Т	A	R	1	G	Е	U	С	в	н	х	A	4
5	S	в	н	М	1	S	J	Ν	F	1	F	х	U	A	R	L	Ρ	γ	L	в	т	Ρ	5
6	0	R	в	U	0	1	Е	۷	в	L	۷	R	Ν	s	Ρ	D	0	к	Α	L	A	R	6
7	N	A	Q	R	Z	N	P	в	Q	в	F	E	Е	т	М	Ε	М	1	С	A	N	1	7
8	J	М	Z	G	Е	х	Е	С	Е	Е	Y	н	С	R	С	R	Е	W	к	С	G	С	8
9	в	в	в	0	Ν	F	A	Е	Ρ	R	т	D	т	А	1	в	G	1	в	к	Е	0	9
10	T	L	A	R	Ν	I.	R	A	R	R	R	Ρ	A	W	Т	Е	R	F	Е	С	R	т	10
11	F	Е	s	А	W	G	R	Е	к	Y	Е	Y	R	в	R	R	А	R	R	υ	I.	s	11
12	A	D	н	Ν	Y	G	в	G	F	L	М	L	1	Е	0	R	Ν	U	R	R	Ν	L	12
13	L	Ρ	Е	G	Q	Ρ	Q	L	Ρ	N	Ν	т	Ν	R	Ν	Y	A	1	Y	R	Е	1	13
14	С	0	V	Е	s	F	L	Ρ	L	U	М	W	Е	R	L	1	Т	т	т	Α	С	М	14
15	Z	Ρ	G	Α	Е	S	A	D	G	S	1	W	Ρ	Y	Q	н	Е	J	G	Ν	Е	Е	15
16	J	F	R	А	x	Е	Ρ	A	s	s	1	0	Ν	F	R	υ	1	т	Ν	т	М	Q	16
17	Y	к	0	G	Ν	Q	Х	н	в	в	F	R	Е	D	С	U	R	R	A	Ν	т	в	17
18	В	۷	х	1	U	в	в	Α	Ν	A	Ν	Α	С	L	E	М	Е	Ν	т	I.	Ν	Е	18
19	F	υ	Ρ	в	L	Y	Е	Ρ	Е	А	С	н	Е	R	R	Y	М	Е	L	0	Ν	R	19
20	к	Q	С	0	х	1	в	R	в	L	U	Е	в	Е	R	R	Y	W	R	Ρ	в	Y	20
21	F	R	Z	т	А	Y	в	E	R	R	Y	J	Х	Ν	С	Е	Ν	۷	D	L	D	С	21
22	z	Е	A	Ρ	Ρ	L	Е	R	U	Y	к	G	R	Е	Е	Ν	G	A	G	Е	R	С	22
	1	2	3	4	5	6	7	8	9	10	100	12 X	13	14	15	16	17	18	19	20	21	22	214

Y

Try and find as many words as you can in 5 minutes.

When you find a word, type the coordinates (X,Y) of the **first** letter in brackets after the word.

Please use a semi-colon (;) to separate your answers.

For example: APPLE (3,22); MANGO (1,1);

•••••

Speakers

- Targets & foils from *DyViS* database (Nolan *et al.* 2009)
 - male, Standard Southern British English, aged 18-25 years
- 3 groups of 15 speakers, 1 per target
- Targets and foils chosen as in McDougall et al. 2021 IAFPA:
 - Listeners judged similarity of all pairings in a group of 15
 - Multidimensional scaling > pseudoperceptual space
 - 9 foils (for target-absent) or 8 (for target-present) speakers sounding most similar to the target selected from each group of 15

Speech material

- Exposure material for target voice: 60s sample from telephone call ('perpetrator' side; studio quality)
- Parade samples: 15s samples from simulated police interview task, using collage technique of Home Office guidelines
- Experiment conducted online using Gorilla

Participants

- N = 180 participants recruited via Prolific (randomly assigned to 1 of 3 targets)
 - born in and lived most of their pre-18 lives in England
 - 1st language English
 - No hearing loss or hearing difficulties
 - 88 male, 92 female, aged 18-40 years (M= 27.72, SD = 6.4)
 - Minimum approval rating of 90% on Prolific

"Imagine that the voice you have just heard is that of a criminal. You may be asked by the police to make an identification some time in the future. Take a few moments now to reflect on the voice." (20 seconds)

Simple attention task – participants push space bar when + appears on screen, several times (20 seconds)

Retention interval:

- 5 min distractor task
- (word search, accompanied by lobby noise)
- exceeds short-term memory capacity; relies on
- long-term-memory

Results: effect of reflection (before distraction task)

- Poor accuracy percentages overall, but above chance (except in targetabsent/no reflection)
- Target-present parades give best performance (consistent with previous findings, e.g. Smith et al. 2020)
- No meaningful differences in performance between with- and withoutreflection (Bayesian mixed models)

- Same design as Experiment 1, but 20-28 hour retention interval between exposure and parade instead of distractor task
- Participants (same recruitment and requirements):
 - N = 181
 - 87 male, 93 female
 - aged 18-40 years (M= 27.97, SD = 6.01)

Experiment 2: overnight delay, no distraction task

	target present	target absent
with reflection	\checkmark	\checkmark
no reflection	\checkmark	\checkmark

3 separate parades, each with its own target (if present), and 3 separate sets of foils, were used; but results will be combined here

instead of distractor task

Results: effect of reflection (before overnight delay)

100% 75% **Response Accuracy** 50% 25% 0% no reflection reflection Reflection

Again, poor accuracy percentages overall,

Again, target-present parades give best performance

No meaningful differences in performance between with and without reflection (Bayesian mixed models)

No interaction btw target presence and reflection

- The motivation for 'reflection' was that the immediate cognitive load of the word-finding task might hinder memory consolidation
- Disappointingly, neither with word-finding simulating a delay, nor with an actual overnight delay, did a period of reflection improve scores

Discussion of 'reflection' (2)

- However, we don't think this closes the case on 'reflection':
 - our period of reflection was very short (20 seconds)
 - it did not allow for repeated 'rehearsal' of the auditory memory, as might happen in a real event
 - we had no check on whether online participants actually reflected on the target voice, rather than (e.g.) their shopping list
- Longer reflection, at least, will be worth exploring

Why is accuracy low? (1)

- Our design minimises 'propitious heterogeneity' (Wells 1993), in order that we can potentially see improvements when factors are varied. By design we use
 - tightly accent-controlled speaker population
 - rigorous selection of perceptually close foils and targets
- i.e., we make the participants' task as earwitnesses as hard as we can
- Carlson et al. 2019 on visual parades:
 - "empirical discriminability decreases as fillers [foils] become too similar to each other and the suspect"

Wells, G. L. (1993) What do we know about eyewitness identification? *American Psychologist* 48(5), 553–571.

Carlson, C.A., Jones, A.R., Whittington, J.E., Lockameyer, M.A.C. & Wooton, A.R. (2019) Lineup fairness: propitious heterogeneity and the diagnostic feature-detection hypothesis. *Cognitive Research: Principles and Implications*. <u>https://doi.org/10.1186/s41235-019-0172-5</u>

Carlson et al.'s computer-generated faces

Wednesday, u/ September 2022

Why is accuracy low? (2)

- We also suspect the (unavoidable) online presentation reduces participants' engagement and motivation
 - McDougall, Nolan & Hudson (2015), in an in-person simulated parade, report 76% correct for target-present and that after a week's retention interval compared to 30-40% here
- In the case of target-absent parades, results just emerging from another IVIP experiment suggest the strength of warning before the parade is crucial:

K. McDougall, F. Nolan and T. Hudson (2015) 'Telephone Transmission and Earwitnesses: Performance on Voice Parades Controlled for Voice Similarity.' *Phonetica* 72: 257-272.

Three strengths of warning

- WEAK: "Remember that the voice you heard at the beginning of the experiment may or may not be present."
- STRONG: "Remember that the perpetrator may or may not be present. Please consider your response carefully. In a real case, selecting someone from the lineup when the perpetrator is not present could lead to a wrongful conviction."
- VERY STRONG: "Remember that the perpetrator may or may not be present. Please consider your response carefully. In a real case, selecting someone from the lineup when the perpetrator is not present could lead to a wrongful conviction. Voice recognition can be very difficult. Only make a positive identification if you are very sure."

IVI

Ρ

Conclusions and further work

- Our two experiments failed to show an effect of a period of 'reflection' — either with simulated (wordtask) or real (overnight) delay
 - the reflection allowed may have been too short
 - we had no check that participants really engaged
- Future work might test longer reflection, and check 'engagement'
- What does improve 'target-absent' accuracy significantly, emerging results suggest, is the strength of warning

See IVIP website for updates

https://www.phonetics.mmll.cam.ac.uk/ivip/

Economic and Social Research Council